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Abstract. Automated segmentation of anatomical structures in fetal
ultrasound video is challenging due to the highly diverse appearance of
anatomies and image quality. In this paper, we propose an ultrasound
video anatomy segmentation approach to iteratively memorise and seg-
ment incoming video frames, which is suitable for online segmentation.
This is achieved by a spatio-temporal model that utilizes an adaptive
memory bank to store the segmentation history of preceding frames to
assist the current frame segmentation. The memory is updated adap-
tively using a skip gate mechanism based on segmentation confidence,
preserving only high-confidence predictions for future use. We evaluate
our approach and related state-of-the-art methods on a clinical dataset.
The experimental results demonstrate that our method achieves superior
performance with an F1 score of 84.83%. Visually, the use of adaptive
temporal memory also aids in reducing error accumulation during video
segmentation.

1 Introduction

In obstetric ultrasound, it is crucial to efficiently identify and segment various
anatomical structures in the fetomaternal environment including the placenta
and maternal bladder. This is because the mutual position between these two
anatomies can indicate obstetric complications and thus inform the safest mode
of delivery [11,15]. Such anatomy location and morphology analysis typically
involve a large amount of manual effort, which is expensive due to the required
expertise and is prone to inter- and intra-observer variation. Automated seg-
mentation of the placenta and bladder can provide valuable information for
computer-aided diagnosis. However, it is difficult to define the boundaries of
such maternal anatomies because of high variations in shape and low contrast
of the ultrasound video.

Several works [5,12,14,18,20,21] have attempted automated segmentation
of maternal anatomies. A typical approach is to employ a 2D network for sin-
gle image segmentation [7], such as U-Net [13] and its variations. For instance,
four U-Net-based networks are used in [21] to segment a placenta image from
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multiple views of 3D ultrasound volumes. They further propose a multi-task
learning approach [20] of placenta position prediction to complement the pla-
centa segmentation task. A coarse-to-fine segmentation pipeline is introduced
in [5], where the initial anatomy segmentation is generated by a U-Net model
and refined by conditional random field as a recurrent neural network. In [18],
a multi-object segmentation network is proposed to segment anatomies in an
ultrasound volume. The current ultrasound segmentation methods focus solely
on individual timestamp and do not take into account the temporal relationship,
leading to inadequate and inconsistent segmentation. Recently, a video-based
segmentation method is proposed [3] to recognize breast lesions, where a 3D
convolutional network with the additional temporal dimension over images is
modelled to reconstruct the segmentation from a pseudo mask. However, their
method requires the entire video to be observed, which makes it not applicable
to online video streams.

In this paper, we propose a video-based approach for online segmentation
by modelling the temporal dynamic behaviour of ultrasound video. We follow
the protocol of one-shot video-object segmentation (OS-VOS) [1]: given only the
first-frame annotation, the model conducts a closed-loop prediction that auto-
matically segments subsequent frames. Our approach utilizes a memory net-
work [10,19] to store the temporal information of ultrasound video. Inspired
by [2] to update states in RNN, we propose a skip gate mechanism on the mem-
ory network, and the memory is further selected by a scoring function [8]. Then,
a combined pixel and region loss encourages the model to consider both local
and regional information, thus facilitating segmentation of accurate shape and
boundary. The contributions of our paper are summarized as follows: 1) We pro-
pose a spatio-temporal model for ultrasound video segmentation with a memory
bank, which provides new insight for video segmentation by effectively utilizing
information from preceding frames. 2) An adaptive temporal memory module
is proposed to update the memory bank with a skip gate, which reduces the
error accumulation and maintains temporal consistency. 3) A combined pixel
and region loss is proposed to learn the shape and boundaries of segmented
regions. An investigation of our approach on an unseen anatomy, i.e., fetal head,
illustrates the generalisability of our approach to other anatomical structures.

2 Method

Our goal is to segment multiple objects in incoming video frames by referring
to the first-frame segmentation. The idea of our model is to use the histori-
cal sequential information retrieved from an adaptive temporal memory bank
to assist in accurate segmentation of the current frame. The current frame
It ∈ R

W×H×3 and the preceding frames I = {Ii|i = 1, ..., t − 1} are considered
as query and memory, respectively. As shown in Fig. 1, the complete framework
consists of three parts: a spatial feature extraction module F with two encoders
EQ and EM used for extracting the spatial representations of query and mem-
ory frames; an adaptive temporal memory module which updates from temporal
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Fig. 1. Flowchart of our architecture. It has three components: the feature extraction
module for spatial feature learning by encoder EM and EQ; the adaptive temporal
memory module controlled by a skip gate mechanism for memory update and memory
reading; and a segmentation head with skip-connection decoder Dseg. ⊗ denotes matrix
inner-product and c© represents the concatenation operation.

dependencies of memory frames I and their predicted masks S′; and a segmen-
tation head, fusing retrieved memory embedding Vm and query embedding VQ

t

to predict the current frame segmentation.

2.1 Spatial Feature Extraction Module

The memory encoder EM takes both the preceding frame Ii and its predicted seg-
mentation mask S′

i as input, and outputs spatial features fM = {EM (Ii, S′
i)|i =

0, . . . , t − 1}, where S′
i helps to identify the spatial features of related targets

from the background. Different from EM , the query encoder EQ only takes the
current frame It as input and produces a feature map fQ

t = EQ(It). Other than
an extraction layer in EM to deal with the segmentation input, EM and EQ share
the same model structure of a ResNet-50 [6] as the feature extraction backbone.

2.2 Adaptive Temporal Memory Module

Memory Construction and Reading. After the spatial feature extraction
module F , each of the spatial features fM from memory and fQ

t from the query
is embedded into a key matrix K ∈ R

w×h×ck and a value matrix V ∈ R
w×h×cv by

two convolutional layers, where ck and cv are the corresponding embedded chan-
nel dimensions, respectively. K is learned to retrieve the relevant feature embed-
ding from the spatial information stored in V. The query value VQ

t focuses on
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the object appearance information at the current time t. The memory value VM
i

learns the relationship between frame and object segmentation. Each key-value
pair from a preceding frame is stored in the memory bank M = {(KM

i ,VM
i )}

with size |M| = Tn, which records the segmentation history and encodes the
object motion across the preceding frames that is useful for subsequent frame
segmentation. The memory embedding for the current frame is retrieved by the
similarity between the query key KQ and the memory key KM , i.e., Vm = WVM ,
where the entry of W is defined as:

ωj =
exp(zKQ

t · KM
j )

∑
l exp(zKQ

t · KM
l )

. (1)

Here z is the scaling factor that is set to 1√
ck

[17].

Skip Gate for Memory Update. As the memory bank consists of information
from each preceding frame, the segmentation error will be accumulated during
this process. To alleviate this problem, we propose to adaptively update the
memory bank with a skip gate mechanism. The key insight is to introduce a score
function to control the temporal information flow that preserves the memories
only with frames given a high segmentation confidence. The skip gate G for the
memory update is implemented by a trainable convolutional network to predict
a confidence score sc from the memory feature fM

i at time i with sci = G(fM
i ) =

G(EM (Ii, S′
i)). Here, G consists of three convolutional layers, two fully-connected

layers, and a sigmoid function such that the predicted score is within the range
of [0, 1]. The role of G is as a regression function to predict the confidence level of
the correspondence between the frame and its predicted segmentation. Only the
frames with a confidence score larger than a predefined threshold τ are used to
update the memory bank. During inference, the proposed skip gate also reduces
the burden of the memory bank to enable fast segmentation.

2.3 Segmentation

Segmentation Head. During segmentation, the predicted mask is generated
by decoder Dseg from both the query value VQ

t at the current frame t and the
retrieved memory value Vm of the past frames i < t. The decoder is built based
on three ResBlock with skip connections. The initial ResBlock merges Vm and
VQ
t to extract comprehensive spatial information for the current segmentation,

and the decoder output is interpolated to the size of It as the predicted segmen-
tation mask.

Training. The overall objective function L is a combination of two loss compo-
nents: a segmentation loss Lseg and a confidence loss Lsc, i.e., L = Lseg + Lsc.
The detailed construction of each loss component is explained next.
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Segmentation Loss. We consider both the local and global errors in the gener-
ated segmentation mask with a pixel loss and a region loss, respectively. The
pixel loss is constructed from the cross entropy between the corresponding seg-
mented pixels, which aims to identify each pixel independently. The region loss
is IoU-based to minimize the mismatched area between two segmentation masks.
Additionally, the inclusion of region loss also helps to alleviate the foreground
and background imbalance present in ultrasound images. Combining the two
losses, the segmentation loss Lseg is given by

Lseg = −
∑

n

(snlog(s′
n) + (1 − sn)log(1 − s′

n))

︸ ︷︷ ︸
pixel loss

+
∑

n sns′
n∑

n(sn + s′
n − sns′

n)
︸ ︷︷ ︸

region loss

, (2)

where sn and s′
n stands for the nth pixel in the segmentation ground truth S

and prediction S′, respectively.

Confidence Loss. The skip gate G predicts the segmentation confidence based
on the image and segmentation features. To train network G, the ground truth
of confidence score of each frame segmentation is defined as the IoU between the
segmentation prediction and its corresponding ground truth. The segmentation
confidence loss Lsc for optimizing the skip gate is defined as:

Lsc = (sc − IoU(S, S′))2 (3)

where sc = G(EM (I, S′)) is the output from skip gate network.

3 Experiments and Results

The dataset used in this paper consisted of 15 ultrasound video scans from
the CALOPUS project [16] that used a U-shaped video sweep protocol to scan
from the maternal right to left over the top of the pelvis. The videos were
randomly split into 11 for training and 4 for test. Each video is approximately
20 s containing around 200 frames after downsampling, with a video frame size
of 1008 × 784. For each video frame, a manual segmentation annotation of the
placenta and maternal bladder was available as ground truth. To increase the
robustness of automated segmentation, we randomly selected three frames in
temporal order with resized shape of 448×448 as one training sample. The model
was trained with an Adam optimizer for 200 epochs with a decayed learning rate
of 2e−5. During inference, a whole video sequence is iteratively segmented given
the manual annotation of the starting frame as reference.

3.1 Evaluations

We compared our method with three image-based models which only use the
current frame to predict the segmentation mask: U-Net [13], ResNet34 [6] and
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Table 1. Quantitative performance of image- and video-based segmentation methods
evaluated by the F1-score, accuracy, Jaccard Index, Hausdorff distance, and contour
accuracy.

Protocol Method F1-score ↑ Accuracy ↑ Jaccard ↑ Hausdorff ↓ Contour ↑
Image-based U-Net [13] 62.51 97.67 52.93 83.60 26.57

ResNet34 [6] 64.25 96.48 50.69 97.24 21.04

TransU-Net [4] 68.00 97.52 59.15 77.84 34.24

Video-based STM [10] 82.50 99.20 73.15 46.16 39.29

Ours 84.83 99.39 76.25 33.73 40.03

Fig. 2. Qualitative results of video segmentation. Red: placenta; Green: bladder. The
white boundary line is the segmentation ground truth of each object. Different frame
positions are shown as the percentage of the video length. (Color figure online)

TransU-Net [4]; and a video-based segmentation model under OS-VOS proto-
col [1] – Spatio-temporal Memory Network (STM) [10]. Table 1 compares these
methods with our approach using five segmentation metrics: F1-score, accuracy,
Jaccard Index, Hausdorff distance, and contour accuracy. Among those metrics,
Hausdorff distance and contour accuracy inform about the object boundary and
shape which are important in our clinical application.

First, we observe that the two video-based methods achieve higher overall
scores than image-based methods, which suggests that the information from
prior video frames is helpful during the video segmentation process. Compared
with video-based STM, our approach with adaptive temporal memory achieves
superior performance with an improvement of F1-score by 2.8%. Our approach
also achieves the lowest Hausdorff distance (33.73 pixels) and the highest contour
accuracy score (40.03%). The accurate shapes and border regions of placenta and
bladder are important indicators for fetal diagnosis. For instance, the distance
between the lower boundary of placenta and the bottom of bladder can be used
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Fig. 3. The quantitative comparison (F1-score) between STM and our approach with
adaptive memory module on each frame along the video.

Table 2. Ablation studies for different experimental settings.

Method F1-score ↑ Accuracy ↑ Jaccard ↑ Hausdorff ↓ Contour ↑
Latest frame only 73.18 99.18 64.52 43.94 32.20

First & latest frames 78.21 99.30 69.70 37.93 34.35

Preceding frames w/o ATM 82.50 99.20 73.15 46.16 39.29

w/o region loss 81.45 99.37 72.85 35.53 37.42

Ours 84.83 99.39 76.25 33.73 40.03

to differentiate normal and abnormally-located placentae [9]. Figure 2 shows typ-
ical visual segmentation results for TransU-Net, STM, and our approach. The
TransU-Net segmentation results are less consistent and less accurate compared
to the video-based methods, as it only considers the current frame appearance
and ignores segmentation history. Within the video-based methods, the segmen-
tation error for STM quickly accumulates as prediction progresses - c.f. the
result at 70% and 95% of the whole video. Figure 3 illustrates the F1-score of
each frame along a video. It can be observed that the model without adaptive
memory (i.e., STM) experiences a significant decrease in performance for the
later frames in the video. By keeping only the memory with high segmenta-
tion confidence in the temporal domain, our approach does not suffer the same
performance degradation.

3.2 Ablation Study

Temporal Memory Bank. We first analyze the influence of using temporal
information. Four scenarios are compared in this experiment: 1) only the lat-
est frame (the frame before current frame) used as memory; 2) the first anno-
tated frame and the latest frame as memory; 3) all preceding frames as memory
without adaptive temporal memory (denoted as w/o ATM ), and 4) preceding
frames with adaptive temporal memory (Ours). The quantitative and qualita-
tive results are shown in Table 2 and Fig. 4, respectively. The model with only
the latest frame as memory produces the lowest F1-score (73.18%) and fails to
segment the bladder. The performance increases to 78.21% by adding the first
frame into the memory, since the first annotation is a key reference to inform
the model with the position of the segmentation. With more preceding frames
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Fig. 4. Qualitative comparisons under different memory settings.

Fig. 5. Visual results on unseen anatomy (fetal head) segmentation.

included (as in w/o ATM ), the temporal dependencies and the motion of objects
in video are modelled in the memory. This allows the model to recall and lever-
age information from previous frames to generate a plausible prediction on the
current frame. Adding the adaptive temporal memory mechanism (as in Ours)
further boosts segmentation performance, which utilizes the skip gate to encour-
age incorrectly segmented frames to be discarded. This enables the model to
self-check and rectify its own errors, resulting in a more accurate segmentation.

Pixel and Region Loss. We tested the model with different loss terms. The
results are reported in the last two rows of Table 2. The model with both pixel
and region loss (shown as Ours) achieves stronger metric scores in terms of
regional evaluation, i.e., Jaccard Index and contour accuracy. This demonstrates
that the region loss encourages the model to pay more attention to the whole
area and thus anatomical structure, resulting in more precise object boundaries.

Sensitivity of First-Frame Annotation. It is of interest to qualify the model
robustness towards the variations of the first-frame annotation. For a test video,
first-frame masks of placenta and bladder from three individuals are served as
reference in addition to the ground truth segmentation. The standard deviation
of their F1-scores is 0.7 and the average Pearson correlation coefficient is 0.89.
This statistical analysis indicates that our model is robust to the first-frame
annotation and can produce reasonable results with inter-variations of reference
frame annotations.
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Unseen Anatomy Segmentation. To investigate generalisability, we tested
our segmentation model on unseen anatomy, i.e., the fetal head. An example
result is shown in Fig. 5. Segmenting the fetal head in ultrasound video is chal-
lenging due to the significant inter-frame shape changes. Our model still gener-
ates valid head segmentation masks over time when given the annotation of the
first frame.

3.3 Conclusions

In this paper, we have proposed an automated ultrasound video segmentation
method which exploits temporal continuity over video frames. A memory bank
is constructed by a memory encoder to extract and store the association between
a frame and its segmentation over time. A skip gate is proposed to control the
memory module update resulting in an adaptive temporal memory bank for
retrieval. Our approach provides new insight using the preceding frames in a
memory bank for online video stream segmentation, and it achieves state-of-the-
art performance on the placenta and maternal bladder. Experiments on video
of an unseen fetal head show the potential of our model to be applied to other
ultrasound anatomical segmentation tasks.
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